

SYNTHETIC OLIGOSACCHARIDES HAVING VARIOUS FUNCTIONAL DOMAINS: POTENT AND POTENTIALLY SAFE HEPARIN MIMETICS

Maurice Petitou,* Pierre-Alexandre Driguez, Philippe Duchaussoy, Jean-Pascal Hérault, Jean-Claude Lormeau and Jean-Marc Herbert

Sanofi Recherche, Haemobiology Research Department, 195, Route d'Espagne, 31036 Toulouse, France

Received 25 August 1998; accepted 15 March 1999

Abstract: A synthetic heptadecasaccharide, comprising an antithrombin III binding domain, a thrombin binding domain, and a neutral methylated hexasaccharide sequence, was obtained through a convergent synthesis. This compound displayed in vitro anticoagulant properties similar to that of standard heparin but, in contrast with heparin, escaped neutralization by platelet factor 4, a protein released by activated platelets.

© 1999 Published by Elsevier Science Ltd. All rights reserved.

Heparin,¹ a complex anionic polysaccharide of animal origin, binds to antithrombin III (AT III), the main physiological inhibitor of blood coagulation, through a unique pentasaccharide sequence.²⁻⁴ Upon binding, a conformational change occurs in AT III⁵ (allosteric activation), allowing inhibition of coagulation factor Xa. In the polysaccharide chains, the pentasaccharide is prolonged, both at the reducing and the non-reducing ends, by so-called regular domains,⁶ essentially made up by repeated tetrasulfated disaccharides, that may interact with the anion binding exosite II of thrombin.⁷ This interaction allows efficient thrombin inhibition, by heparinbound AT III, according to a template mechanism.⁸ Like thrombin, several other proteins interact with heparin in a non-specific way. In this respect, the interaction with platelet factor 4 (PF4),⁹ a basic protein released by

$$O_{3} = O_{3} O_$$

activated platelets, is at the origin of the most harmful side effect of current heparinotherapy: heparin induced thrombocytopenia which occurs in 3% of patients treated with standard heparin; ¹⁰ In contrast with the anticoagulant activity which depends on the presence of unique structural domains of the molecule, most of

these nonspecific interactions are directly correlated with the charge density and the size of the heparin chains that may contain up to a hundred saccharide units.⁶

To obtain better tolerated drugs, we have synthesized oligosaccharide heparin mimetics displaying the AT III mediated anticoagulant activity of heparin, but the size and the charge of which have been adapted to exclusively obtain optimized anticoagulant/antithrombotic effects.¹¹⁻¹⁵ We found that the minimum number of saccharide units to be included in the chain to observe thrombin inhibition was fifteen^{14,15} (1a) while comparison of the activity of 1a, 1b, and 1c showed that this inhibition increased with the length of the chain.¹⁵ However the anticoagulant activities of 1a-c could be neutralized by PF4, indicating that reducing the size down to the minimum still allowing thrombin inhibition was not sufficient to abolish undesired interactions.

We therefore reduced the charge of the molecule, the second parameter governing nonspecific interactions of heparin. The design of our target molecules was based on the following observations: (i) a pentasaccharide sequence DEFGH, the AT III binding domain (ABD) is required to bind and activate AT III toward factor Xa inhibition; (ii) the thrombin binding domain (TBD) must be, according to the literature, ¹⁶ two to three disaccharides in length; and (iii) the required number of saccharide units being fifteen, the six central saccharide units in 1a-c are probably not critically involved in the interaction neither with AT III, nor with thrombin, and the charges on these units can therefore be decreased or suppressed without affecting the anticoagulant activity. This analysis, which was supported by modelling studies of the ternary AT III/thrombin/heparin complex¹², led us to synthesize 2 (Scheme 1), which comprises an ABD having a very high affinity for AT III. ^{11,13}

Scheme 1. Retrosynthetic analysis of 2.

The fully protected 27 is a synthetic equivalent of 2. It can be obtained from the tetrasaccharide 24, available from previous work, 17 which is first coupled to the heptasaccharide 23, followed by addition of 15. To minimize the number of steps 15 and 23 derive from the same hexasaccharide precursor 12, the key synthon of this synthesis. A *p*-methoxybenzoyl ester was chosen to protect the position 6 of the D unit in 23 because we observed that such an ester strongly oriented a glycosylation reaction toward the formation of the α -anomer, when a benzyl ether was present at position 2 of glucose. 18 The choice of a *p*-methoxyphenyl (MP) ether 19 to protect the position 4 of the non-reducing end unit of 12 was dictated by the many different types of reaction

conditions the temporary protective group at this position had to withstand (alkylation, acetolysis, base treatment, catalytic hydrogenation, conditions for activation of imidates and thiol functions, fluoride ions treatment). Moreover this group must be removed under conditions that do not affect acetates, benzyl ethers, and benzyl esters.

Scheme 2. (a) p-MeOPhOH, AlCl₃, 90 °C, 20 min, 74%; (b) 1 M BnONa/BnOH, 35 min; (c) then 110 °C, 1.5 h, 94% over the two steps; (d) MeI, NaH, DMF, 0 °C \rightarrow RT, 97%; (e) (NH₄)₂Ce(NO₃)₆, CH₃CN/H₂O, 0 °C, 10 min, 94%; (f) CF₃COOH, Ac₂O, 16 h; (g) BnNH₂, Et₂O, 5 h, 96% over the two steps; (h) CCl₃CN, Cs₂CO₃, CH₂Cl₂, 1 h, 98%; (i) TBDMSOTf, CH₂Cl₂, 4Å MS, -20 °C, 10 min; (j) H₂, Pd/C, t-BuOH/ CH₂Cl₂, 16 h; (k) Ac₂O, DMAP, Et₃N, CH₂Cl₂, 1.5 h, 66% over the three steps; (l) (NH₄)₂Ce(NO₃)₆, DMF/H₂O, 0 °C, 4 h, 84%; (m) CF₃COOH, Ac₂O, 1.5 h; (n) BnNH₂, Et₂O, 2 h, 92% over the two steps; (o) CCl₃CN, K₂CO₃, CH₂Cl₂, 16 h, 87%.

Introducing the MP group at position 4 in the *gluco* configuration was easily achieved (Scheme 2) through inversion of the configuration at position 4 of the known *galacto* epoxide 3,²⁰ by treatment with *p*-methoxyphenol in the presence of aluminium chloride. Base treatment of the resulting 3-hydroxy-2-O-tosyl derivative, at room temperature, with sodium benzylate, gave the 1,2-manno epoxide. Simple heating of the

Scheme 3. (a) TBDMSOTf, CH_2Cl_2 , 4Å MS, $-20\,^{\circ}\text{C}$, $20\,\text{min}$, 62%; (b) $(NH_4)_2Ce(NO_3)_6$, CH_3CN/H_2O , $0\,^{\circ}\text{C}$, $1\,\text{h}$, 81%; (c) like a, 75%; (d) like b, 82%; (e) CF_3COOH , Ac_2O , $16\,\text{h}$; (f) $BnNH_2$, THF, $2\,\text{h}$, 89% over the two steps from 12; 78% over the two steps from 13; (g) CCl_3CN , Cs_2CO_3 , CH_2Cl_2 , $1\,\text{h}$, 82% for 14; 88% for 15.

reaction mixture then resulted, as expected, in trans-diaxial opening of the epoxide by selective attack at position 2, leading to the desired 2-O-benzylated derivative (94% over the two steps). Methylation then delivered 421 in excellent yield. Selective deprotection of position 4, using ceric ammonium nitrate (CAN), 19,22 gave 5 while, after acetolysis of the 1.6-anhydro ring of 4, anomeric deacetylation using benzylamine in ether23 followed by reaction with trichloroacetonitrile in the presence of cesium carbonate24 yielded the imidate 6. Condensation of 5 and 6 (molar ratio 1.4/1) gave a mixture of the corresponding disaccharides (a/\beta 3/2), which was submitted catalytic hydrogenation followed by acetylation, which stage column at chromatography gave pure 7 (66% from 6). This latter was treated as described for 4 to deliver 8 and 9, that reacted together to give the tetrasaccharide 10 (Scheme 3). After removal of the p-methoxyphenyl protecting group,

similar addition of a new disaccharide unit to 11 gave the pivotal hexasaccharide 12.

The hexasaccharide 13 was treated like 4 to give in three steps the imidate 15. The same sequence of reactions also converted 12 into 14. This latter reacted with 18 (obtained as shown in Scheme 4), the precursor of the D-unit of 2. Thank to the participating group present in 14 the reaction delivered stereospecifically 19 in excellent yield (87%). 18 was equipped with a temporary t-butyldimethylsilyl ether at position 6 to allow the next deacetylation and methylation steps that furnished 21. Selective cleavage of the silyl ether by fluoride ions, t followed by reaction with t p-methoxybenzoyl chloride, then provided the glycosyl donor 23.

Scheme 4. (a) AcONa, Ac2O, 150 °C, 1.5 h, quantitative; (b) EtSH, BF₃-Et₂O, 74%; (c) toluene. 1 h, MeONa. MeOH/CH₂Cl₂, 1 h, quantitative; (d) PhCH(OMe)2, CSA, CH3CN, 0 °C, 70 min, 59%; (e) MeI, NaH, DMF, 0 °C→RT; (f) 60% aq AcOH, 80°C, 45 min; (g) TBDMSCI, DMAP, Et₃N, CH₂Cl₂, 5 h, 88% over the three steps; (h) TBDMSOTf, CH2Cl2, 4A MS, -20 °C, 50 min, 87%; (i) 1 M aq NaOH, MeOH/CH2Cl2, 4 h; (j) MeI, NaH, DMF, 0 °C, 2.5 h, 86% over the two steps; (k) Bu₄N⁺ F⁻, THF, 65 °C, 1 h, 94%; (1) p-MeOBzCl, DMAP, pyridine, 60 °C, 1.5 h, 97%.

Having all the synthons in hand we then assembled 27 (Scheme 5). Reaction of the heptasaccharide 23 and 24 in the presence of N-iodosuccinimide and triflic acid^{26,27} gave 25 in 56% yield. Cleavage of the MP protecting group gave the acceptor 26, which reacted with the imidate 15 to provide 27.

Scheme 5. Reagents and conditions: (a) NIS/TfOH, CH_2Cl_2/El_2O , -45 °C, 3 h, 56%; (b) $(NH_4)_2Ce(NO_3)_6$, CH_3CN/H_2O , 0 °C, 30 min, 84%; (c) TBDMSOTf, CH_2Cl_2 , 4Å MS, -20 °C, 1 h, 70%; (d) H_2 , Pd/C, AcOH, 16 h; (e) 5M NaOH, MeOH, 1.5 h; (f) $El_3N:SO_3$, DMF, 55 °C, 20 h, 77% over the three steps.

Finally 27 was converted into 2 using the following steps:^{11,28} (i) Pd/C catalyzed hydrogenation of the benzyl groups, (ii) saponification of the esters using sodium hydroxide, and (iii) sulfation of the generated hydroxyl functions by triethylamine sulfur trioxide complex in DMF. The structure and the purity of 2 (360 mg were obtained) was confirmed by spectroscopic methods²¹. ¹H NMR analysis indicated that 2 was about 95% pure.

The in vitro biological activities of 1b, 2, and heparin are shown in Table 1. The three compounds displayed similar anticoagulant potencies. In vivo, in various animal models of venous and arterial thrombosis, 2 was five to ten times more potent than standard heparin (ED₅₀ 15-66 μ g/kg vs. 77-700 μ g/kg). Noteworthy, while PF4 was able to fully neutralize thrombin inhibition by 1b and heparin, the activity of 2 was not affected by the presence of this protein, even when added at very large concentration (100 μ g/mL). These results demonstrate that synthetic substitutes for heparin, endowed with the full anticoagulant activity but potentially

devoid of harmful interactions with platelets and PF4, can be obtained by chemical synthesis of oligosaccharides having functional domains separated by neutral oligosaccharide sequences.

Table 1. Biological properties of 1b, 2, and heparin. Affinity for AT III,²⁹ factor Xa inhibition,³⁰ and thrombin inhibition³¹ were

determined using published procedures.

Compound N°	1b	2	heparin
Number of saccharide units	17	17	≈ 10- 5 0
Molecular weight	6378	5322	≈ 15000
Affinity for AT III (Kd, $nM \pm SD$, $n = 3$)	3.3 ± 0.8	7.0 ± 1.5	25 ± 0.2
Factor Xa inhibition (units/mg \pm SD, n = 3)	270 ± 8	270 ± 8	180
Thrombin inhibition (IC50, ng/mL, 95% confidence interval)	5.3 (5-5.4)	9.3 (9.0-9.6)	3.3 (3-4)

Acknowledgements: This work is part of a collaborative project between N. V. Organon (The Netherlands) and Sanofi Recherche (France) on antithrombotic oligosaccharides.

References

- 1. Heparin; Lane, D. A.; Lindahl U., Eds.; Edward Arnold: London, 1989.
- 2. Casu, B.; Oreste, P.; Torri, G.; Zoppetti, G.; Choay, J.; Lormeau, J.-C.; Petitou, M.; Sinay, P. *Biochem J.* 1981, 197, 599.
- 3. Thunberg, L.; Bäckström, G.; Lindahl, U. Carbohydr. Res. 1982, 100, 393.
- 4. Choay, J.; Petitou, M.; Lormeau, J.-C.; Sinay, P.; Casu, B.; Gatti, G. Biochem. Biophys. Res. Commun. 1983, 116, 492.
- Jin, L.; Abrahams, J.-P.; Skinner, R.; Petitou, M.; Pike, R. N.; Carrell, R. W. Proc. Natl. Acad. Sci. USA 1997, 94, 14683.
- 6. For a review: Casu B. Adv. Carbohydr. Chem. Biochem. 1985, 43, 51.
- 7. For a review: Stubbs, M. T.; Bode, W. Trends Biochem. Sci. 1995, 20, 23.
- 8. For a review: Olson, S. T.; Björk, I. Semin. Thromb. Hemostasis 1994, 20, 373.
- 9. Stuckey, J. A.; St. Charles R.; Edwards B. F. P. Proteins: Struct., Funct., and Genet. 1992, 14, 277.
- 10. For a review: Warkentin, T. E.; Chong B. H.; Greinacher, A. Thromb. Haemost. 1998, 79, 1.
- 11. van Boeckel, C. A. A.; Petitou, M. Angew. Chem. Int. Ed. Engl. 1993, 32, 1671.
- 12. Grootenhuis P. D. J.; Westerduin, P.; Meuleman, D.; Petitou, M.; van Boeckel, C. A. A. Nature Struct. Biol. 1995, 2, 736.
- 13. Westerduin, P.; van Boeckel, C. A. A.; Basten, J. E. M.; Broekhoven, M. A.; Lucas, H.; Rood, A.; van der Heijden, H.; van Amsterdam, R. G. M.; van Dinther, T. G.; Meuleman, D. G.; Visser, A.; Vogel, G. M. T.; Damm, J. B. L.; Overklift, G. T. *Bioorg. Med. Chem.* 1994, 2, 1267.
- 14. Petitou, M.; Duchaussoy, P.; Driguez, P.-A.; Hérault, J.-P.; Lormeau, J.-C.; van Boeckel, C. A. A.; Herbert, J.-M. Angew. Chem. Int. Ed. Engl. 1998, 37, 3009.
- Petitou, M.; Driguez, P.-A.; Duchaussoy, P.; Hérault, J.-P.; Lormeau, J.-C.; Herbert, J.-M. Bioorg. Med. Chem. Lett. 1999, 9, 1155.
- 16. Olson, S.T.; Halvorson, H. R.; Björk I. J. Biol. Chem. 1991, 266, 6342.
- 17. van der Heijden, H.; Geertsen, T.; Pennekamp, M.; Willems, R.; Vermaas, D. J., Westerduin P. Abstr. IXth Europ. Carbohydr. Symp., Utrecht, 1997, p. 154.
- 18. Petitou, M.; Sinaÿ, P. Carbohydr. Res. 1975, 40, 13.
- 19. Petitou, M.; Duchaussoy, P.; Choay J. Tetrahedron Lett. 1988, 29, 1389.

- 20. Cerny, M.; Gut, V.; Pacak, J. Collect. Czech. Chem. Commun. 1961, 26, 2542.
- All new compounds were analysed by ¹H NMR, mass spectrometry and occasionally by HPLC. Combustion analyses were systematically performed on monosaccharides and disaccharides only. Selected analytical data: 4: mp 81 °C (from EtOAc-cyclohexane); $[\alpha]_D$ -29 (c 1, CH₂Cl₂). 5: $[\alpha]_D$ -62° (c 1.3, CH_2Cl_2). 6: ¹H NMR δ 6.45 (d, $J_{1,2}$ =3.6 Hz, H-1 α), 5.85 (d, $J_{1,2}$ =8.0 Hz, H-1 β). 7: mp 107 °C (from diethylether). 8: mp 133 °C (from EtOAc-cyclohexane). 9: ¹H NMR δ 6.47 (d, J_{1.2}=3.7 Hz, H-1α), 5.50 $(d, J_{1,2}=4.0 \text{ Hz}, H-1'\alpha)$, 5.84 $(d, J_{1,2}=6.9 \text{ Hz}, H-1'\beta)$, 5.44 $(d, J_{1,2}=4.4 \text{ Hz}, H-1\beta)$. 10: $[\alpha]_D +88^{\circ}$ (c 1.4, CH_2Cl_2). 17: mp 134 °C (from diethylether); $[\alpha]_D$ -60° (c 1.46, CH_2Cl_2). 18: $[\alpha]_D$ -44° (c 1.33, CH_2Cl_2). For longer oligosaccharides ¹H NMR data were collected at 500 MHz in D₂O (external TSP), δ for anomeric protons and $J_{1,2}$ are reported (detailed data are available on request). Mass Spectrometry data (ESI MS) were collected using Electron Spray Ionisation in the negative mode, monoisotopic mass/average mass/experimental mass are given. Compound 2: $[\alpha]_D$ +51 (c 0.83, water). ESI MS, $5318.09/5322.11/5319.14 \pm 0.99$ a.m.u.. ¹H NMR from nonreducing-end (unit 1) to reducing-end (unit 17): unit 1, 5.70 ($J_{1,2}$ =3.5 Hz); unit 2, 4.79 ($J_{1,2}$ =7.9 Hz); unit 3, 5.47 ($J_{1,2}$ =3.5 Hz); unit 4, 4.77 ($J_{1,2}$ =7.9 Hz); unit 5, 5.46 ($J_{1,2}$ =3.5 Hz); unit 6, 4.55 ($J_{1,2}$ =7.9 Hz); unit 7, 5.59 ($J_{1,2}$ =3.3 Hz); unit 8, 4.43 ($J_{1,2}$ =7.7 Hz); unit 9, 5.64 ($J_{1,2}$ =3.3 Hz); unit 10, 4.43 ($J_{1,2}$ =7.7 Hz); unit 11, 5.64 ($J_{1,2}$ =3.3 Hz); unit 12, 4.63 $(J_{1,2}=7.7 \text{ Hz})$; unit 13, 5.45 $(J_{1,2}=3.5 \text{ Hz})$; unit 14, 4.67 $(J_{1,2}=7.7 \text{ Hz})$; unit 15, 5.42 $(J_{1,2}=3.5 \text{ Hz})$; unit 16, 5.07 ($J_{1,2}$ =3.1 Hz); unit 17, 5.16 ($J_{1,2}$ =3.5 Hz).
- 22. Jacob, P. III; Callery, P. S.; Shulgin, A. T.; Castagnoli, N. Jr. J. Org. Chem. 1976, 41, 3627.
- 23. Helferich, B.; Portz, W. Chem. Ber. 1953, 86, 604.
- 24. Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1994, 50, 1.
- 25. Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.
- 26. Veeneman, G. H.; van Leeuwen, S. H.; van Boom, J. H. Tetrahedron Lett. 1990, 31, 1331.
- 27. Konradsson, P.; Udodong, U. E.; Fraser-Reid, B. Tetrahedron Lett. 1990, 31, 4313.
- 28. Petitou, M.; Duchaussoy, P.; Jaurand, G.; Gourvenec, F.; Lederman, I.; Strassel, J.-M., Bârzu, T.; Crépon, B.; Hérault, J.-P.; Lormeau, J.-C.; Bernat, A.; Herbert, J.-M. J. Med. Chem. 1997, 40, 1600.
- 29. Atha, D. H.; Lormeau, J.-C.; Petitou, M.; Rosenberg, R. D.; Choay J. Biochemistry 1987, 26, 6454.
- 30. Teien, A. N.; Lie, M. Thromb. Res. 1977, 10, 399.
- 31. Herbert, J.-M.; Hérault, J.-P.; Bernat, A.; van Amsterdam, R. G. M.; Vogel, G. M. T.; Lormeau, J.-C.; Petitou, M.; Meuleman, D. G. Circulation Res. 1996, 76, 590.